Skip to contents

If you want to have a closer look at the images and plots just do a “right-click” on the image and select “open in new tab”

The output folders contained figures that were always exported in two file formats: vector PDF and raster PNG.

Recommendations for MacOS Users

For MacOS users, it is recommended to use the PDF files, for example in Keynote, to achieve better quality.

Recommendations for Windows Users

For Windows users, it is recommended to use the PNG files, as applications like Microsoft PowerPoint can sometimes have issues when working with vector graphics.

SpectroPipeR - normalization and quantification module

The norm_quant_module() function serves to further process the data from the read_spectronaut_module(); utilizes the read_spectronaut_module output:

data normalization: - normalize the ion data using the median-median normalization or auto-detect if the data was already normalized in Spectronaut using e.g. local cross-run normalization (If normalization was conducted using Spectronaut, the median-median normalization step is omitted, and the data normalized by Spectronaut is utilized.)

(optional) batch adjusting: - provides the batch adjusting functionality if needed using the ComBat methodology described in Johnson et al. 2007 doi:10.1093/biostatistics/kxj037

(optional) covariate adjusting: - provides the covariate adjusting functionality if needed using the lm() function and the user specified meta data and formula to calculate the residuals per peptides which are back-transformed to intensities by adding the mean peptide intensity.

protein quantification: - protein quantification can be either done by Hi3 (project-wide determination of Hi3 peptides) or MaxLFQ approach (iq package doi:10.1093/bioinformatics/btz961)

EG.TotalQuantity (Settings) column is used for the quantification. Per default MS2 level should be selected in the quantification setting in Spectronaut™.

norm_quant_module() workflow

  1. load read_spectronaut_module() output
  2. (optional) check batch or covariate adjustment inputs
  3. auto-detect if normalization was done inside Spectrout, if yes use this normalization if not use median-median normalization
  4. calculate/ectract normalization factors
  5. generate plots for normalization factors/raw/normalized ion intensities
  6. calculate ion coefficient of variation (CV) globally and per missed cleavage
  7. calculate peptide intensities by summing up the ion intensities per peptide sequence
  8. replacing 0 peptide intensity values with the half-minimal peptide intensity value
  9. (optional) filter out methionine-oxidized peptides
  10. (optional) perform batch adjusting using ComBat; PCA of data before and after adjusting
  11. (optional) perform covariate adjusting of data; PCA of data before and after adjusting
  12. calculate protein intensity from peptide intensities (Hi3 or MaxLFQ)
  13. extract iBAQ intensities (optional - covariate adjustment)
  14. calculate protein intensity CV
  15. compare protein int. (Hi3 or MaxLFQ) vs. iBAQ
  16. calc. cumulative frequency of CV
  17. generate sample to condition file including measurement order
  18. generate plots & table outputs

background informations

coefficient of variation (CV)

coefficient of variation (CV) = standard deviation / mean

The coefficient of variation (CV) is a measure of the variability of a dataset, and it is commonly used in proteomics to assess the reproducibility of protein abundance measurements. In the given context, the CV is observed to be higher in the low abundant range of the protein intensity and lower in the mid to higher abundant range.

Several factors can influence the CV, including: sample preparation, sample type, Mass Spectrometry (MS) methodology

Hi3 protein intensity

Hi3 uses the mean over the highest 2-3 peptides per protein defined by the median over the whole dataset.

iBAQ protein intensity

The iBAQ (intensity-Based Absolute Quantification) is a method used in proteomics to estimate the relative abundance of proteins within a sample. The iBAQ value for a protein is calculated by dividing the total intensity (sum of peptide intensities) of the protein by the number of theoretically observable tryptic peptides for that protein. This normalizes the protein intensity by the number of peptides that can be detected. Schwanhäusser et al., 2011 doi:10.1038/nature10098

MaxLFQ protein intensity

MaxLFQ stands for Maximal Peptide Ratio Extraction and Label-Free Quantification. It is an algorithm used to estimate protein abundances in mass spectrometry-based proteomics by aiming to maintain the fragment intensity ratios between samples. The MaxLFQ algorithm calculates protein intensities by taking the maximum peptide ratio of all peptides that map to a protein and normalizing it across all samples.

The MaxLFQ algorithm was developed by Cox et al. in 2014 doi:10.1074/mcp.M113.031591 and is widely used in label-free quantitative proteomics. It is considered to be an accurate method for proteome-wide label-free quantification.

In more technical terms, the MaxLFQ algorithm calculates ratio between any two samples using the peptide species that are present. The pair-wise protein ratio is then defined as the median of the peptide ratios, to protect against outliers (require a minimal number of two peptide ratios in order for a given protein ratio to be considered valid). At this point the algorithm constructed a triangular matrix containing all pair-wise protein ratios between any two samples, which is the maximal possible quantification information. Then the algorithm perform a least-squares analysis to reconstruct the abundance profile optimally satisfying the individual protein ratios in the matrix based on the sum of squared differences. Then the algorithm rescales the whole profile to the cumulative intensity across samples, thereby preserving the total summed intensity for a protein over all samples. This procedure is repeated for all proteins, resulting in an accurate abundance profile for each protein across the samples.

Batch adjustment of data using ComBat

Batch effects refer to systematic differences between batches (groups) of samples in high-throughput experiments. These differences can arise due to various factors, such as batch variations in sample preparation, handling, processing procedures and measurement orders. Batch effects can obscure the true biological signal and lead to incorrect conclusions if not properly accounted for. In the SpectroPipeR pipeline, the ComBat tool was employed to adjust for batch effects in the datasets where the batch covariate was known. ComBat utilizes the methodology described in Johnson et al. 2007 doi:10.1093/biostatistics/kxj037. It uses an empirical Bayes (EB) framework for adjusting data for batch effects that is robust to outliers in small sample sizes and performs comparable to existing methods for large samples. Johnson et al. 2007 doi:10.1093/biostatistics/kxj037 This method incorporates systematic batch biases common across genes in making adjustments, assuming that phenomena resulting in batch effects often affect many genes in similar ways (i.e. increased expression, higher variability, etc). Specifically, the L/S model parameters are estimated that represent the batch effects by pooling information across genes in each batch to shrink the batch effect parameter estimates toward the overall mean of the batch effect estimates (across peptides). These EB estimates are then used to adjust the data for batch effects, providing more robust adjustments for the batch effect on each peptide. In SpectroPipeR a parametric ComBAT empirical Bayes adjustment is implemented by utilizing the sva-package. After adjusting the data you may find a PCA analysis plot (Dim. 1-5) of adjusted and un-adjusted data under 05_processed_data. Following the adjustment of peptide data, protein intensities are then computed.

Covariate adjustment

SpectroPipeR is capable of performing covariate adjustment on quantitative data. This adjustment is achieved by utilizing user-provided meta data and a formula. The adjustment process employs the linear model function, lm(), and it operates on the log10 transformed peptide intensity data. Once the linear model is fitted, the residuals are computed. These residuals are then adjusted back to the original quantitative range by adding the mean peptide intensity across all samples. This ensures that each peptide’s quantitative range is preserved. Following the adjustment of peptide data, protein intensities are then computed. Given that iBAQ intensities are derived from the Spectronaut report, they undergo a similar adjustment process as was applied to the peptides.

covariate adjustment example on simulated peptide data (left pannel: peptide intensities; right pannel: age adjusted peptide intensities)
covariate adjustment example on simulated peptide data (left pannel: peptide intensities; right pannel: age adjusted peptide intensities)

example code

norm_quant_module() needs the output of the read_spectronaut_module() !

# step 2: normalize & quantification module
SpectroPipeR_data_quant <- norm_quant_module(SpectroPipeR_data = SpectroPipeR_data)
# #*****************************************
# # NORMALIZATION & QUANTIFICATION MODULE
# #*****************************************
# 
# sorting Replicates and conditions ...
# NORMALIZATION WAS DONE IN SPECTRONAUT...
# ...skipping normalization step and use Spectronaut normalized data instead...
# save Normalization factor plot ...                                                                        
# save Normalization boxplot ...
# count missed cleavages ...
# save missed cleavage plots...                                                                             
# generate ion CV data...
# save ion CV data plots...
# save ion CV data vs. mean intensity hexbin plots...
# calculating peptide intensity data ...
# writing peptide intensity data ...
# protein intensity calculation ...                                                                         
# extracting iBAQ intensities from Spectronaut report ...
# calc. mean, SD, CV of iBAQ intensities ...
# ... save iBAQ data ...
# perform maxLFQ protein intensity calculation ... (this will take some time)                               
# ... preprocessing data for MaxLFQ estimation ...
# Concatenating secondary ids...
# 
# Removing low intensities...
# 
# ... generate protein list for MaxLFQ estimation ...
# # proteins = 1503, # samples = 8
# 5.1%
# 10%
# 15%
# 20%
# 25%
# 30%
# 35%
# 40%
# 46%
# 51%
# 56%
# 61%
# 66%
# 71%
# 76%
# 81%
# 86%
# 91%
# 96%
# Completed.
# ... calculation of MaxLFQ ...
# 5.1%
# 10%
# 15%
# 20%
# 25%
# 30%
# 35%
# 40%
# 46%
# 51%
# 56%
# 61%
# 66%
# 71%
# 76%
# 81%
# 86%
# 91%
# 96%
# Completed.
# ... generate outputs for MaxLFQ estimation ...
# ... do median normalization of maxLFQ data ...
# ... save MaxLFQ boxplot ...
# ... save MaxLFQ data ...
# ... compare protein intensities and iBAQ protein intensities ...                                           
# ... CV plot calculation ...
# ... render CV plot ...
# _________ normalization done _________
# no outlier detected with 4 fold difference from the median

norm_quant_module() outputs

The output in your specified output folder for the norm_quant_module() function should look like in this example (03_normalization, 05_processed_data):

normalization - figures

normalization_factor_plot

The bar chart, denoted as normalization_factor_plot, depicts the normalization factor employed for data normalization. In the event that local cross-run normalization was chosen in Spectronaut, the median of the normalization factors is exhibited. The user-defined cut-off threshold in the SpectroPipeR parameters setting is represented by the solid lines. If a run were to have a normalization factor exceeding the threshold, it would be highlighted in orange on the plot and indicated in the normalization tables.

normalization_factor_BOXplot

The boxplot/density chart, denoted as normalization_factor_BOXplot, depicts the normalization factor employed for data normalization e.g. if local cross-run normalization was chosen in Spectronaut.

normalization_boxplot

The boxplot/density chart, denoted as normalization_boxplot, depicts the raw and normalized ion intensities.

ion intensity plot of identified and not-identified ions

The boxplot/violin chart, denoted as ion_intensity_Identified_notIdentified, displays the identified and not-identified (imputed or background signal) ion intensities.

ion_CV_plot

The ion_CV_plot illustrates the ion coefficient of variation (CV) globally and assigned to missed cleavages.

ion_intenisty_vs_CV_hexbin_plot

The ion_intenisty_vs_CV_hexbin_plot depicts the ion coefficient of variation (CV) in regard to the normalized ion intensity.

normalization - tables

Median_normalization_factors.csv

The file_list.csv table contains 4 columns and gives a brief overview of the files used in the project

  • R.FileName is the capped raw file name
  • R.Condition is the condition naming which was setup in your Spectronaut analysis
  • R.Replicate is the replicate number which was setup in your Spectronaut analysis
  • MedianNormalizationFactor is the normalization factor or in case of local cross run normalization the median of the normalization factors
  • normalization_outlier indicator column for an outlier based on the normalization factor threshold the user specified in the SpectroPipeR parameters
R.FileName R.Condition R.Replicate MedianNormalizationFactor normalization_outlier
20230222_Exp…anual_MixA_TR1 A_manual 1 0.8117018 no
20230222_Exp…anual_MixA_TR2 A_manual 2 0.8680521 no
20230222_Exp…anual_MixA_TR3 A_manual 3 0.9313351 no
20230222_Exp…anual_MixA_TR4 A_manual 4 1.0809348 no
20230222_Exp…anual_MixB_TR1 B_manual 1 1.0050862 no
20230222_Exp…anual_MixB_TR2 B_manual 2 1.0473045 no
20230222_Exp…anual_MixB_TR3 B_manual 3 1.0161635 no
20230222_Exp…anual_MixB_TR4 B_manual 4 1.1874938 no

processed data - figures

MaxLFQ_protein_intensity_boxplot

The MaxLFQ_protein_intensity_boxplot illustrates the raw and normalized MaxLFQ protein intensities.

CV_vs_intensity_plot

The CV_vs_intensity_plot depicts the normalized protein intensity vs the coefficient of variation (CV) of the protein intensity.

The horizontal solid line in the figure indicates a CV of 0.1, while the dotted line represents a CV of 0.2. These lines serve as reference points to evaluate the variability of the protein abundance measurements.

The pink labels in the figure show the percentage of proteins that have a CV below 0.1 or 0.2, respectively, in relation to the total number of protein identifications. This information provides insights into the overall reproducibility of the protein abundance measurements within the dataset.

protein_intensities_vs_iBAQ_intensities

The protein_intensities_vs_iBAQ_intensities plot depicts the the ratios between different protein intensity estimation algorithms, such as MaxLFQ and iBAQ. This allows the user to assess the relationship and potential differences between these estimation methods.

In the upper panel the plot displays the ratios between the protein intensity estimates, providing a visual representation of the similarities or discrepancies between the different algorithms.

The lower panel of the plot includes a bar chart that shows the count or frequency of the individual protein intensity estimations.

CV_cumulative_frequency_plot

The CV_cumulative_frequency_plot graphically represents the cumulative frequency of the Coefficient of Variation (CV) at both the peptide and protein levels. On the x-axis, the coefficient of variation (CV) is plotted, while the y-axis displays the cumulative frequency. The lines are differentiated by color according to the condition. This enables the user to assess and evaluate the reproducibility of measurements across different conditions in the analysis.

processed data - tables

sample_to_condition_file.csv

The sample_to_condition_file.csv table contains the information about the run file name, condition, replicate, run date and resulting measurement order.

  • R.Condition is the condition naming which was setup in your Spectronaut analysis
  • R.FileName is the capped raw file name
  • R.Replicate is the replicate number which was setup in your Spectronaut analysis
  • R.Run Date raw file run date
  • measurement_order measurement order (integer)
R.Condition R.FileName R.Replicate R.Run Date measurement_order
A_manual 20230222_Exp…anual_MixA_TR1 1 2023-02-23 02:40:34 1
A_manual 20230222_Exp…anual_MixA_TR2 2 2023-02-23 04:48:36 2
A_manual 20230222_Exp…anual_MixA_TR3 3 2023-02-23 06:56:38 3
A_manual 20230222_Exp…anual_MixA_TR4 4 2023-02-23 09:04:40 4
B_manual 20230222_Exp…anual_MixB_TR1 1 2023-02-23 11:12:43 5
B_manual 20230222_Exp…anual_MixB_TR2 2 2023-02-23 13:20:47 6
B_manual 20230222_Exp…anual_MixB_TR3 3 2023-02-23 15:28:46 7
B_manual 20230222_Exp…anual_MixB_TR4 4 2023-02-23 17:36:48 8
peptide_intensities.csv

The peptide_intensities.csv table contains the information about the calculated peptide intensities. Specifically, this table holds the sum of the normalized ion data for each peptide-sample combination.

  • R.FileName is the capped raw file name
  • R.Replicate is the replicate number which was setup in your Spectronaut analysis
  • R.Condition is the condition naming which was setup in your Spectronaut analysis
  • PG.ProteinGroups protein group IDs
  • EG.ModifiedPeptide modified peptide sequences
  • PEP.StrippedSequence stripped peptide sequences
  • peptide_intensity peptide intensity
R.FileName R.Replicate R.Condition PG.ProteinGroups EG.ModifiedPeptide PEP.StrippedSequence peptide_intensity
20230222_Exp…anual_MixA_TR1 1 A_manual A0PJW6 GEVPAMLPLK GEVPAMLPLK 12263.129
20230222_Exp…anual_MixA_TR1 1 A_manual A0PJW6 LFDNTVGAYR LFDNTVGAYR 18185.355
20230222_Exp…anual_MixA_TR1 1 A_manual A1X283 AAAASVPNADGLK AAAASVPNADGLK 12529.687
20230222_Exp…anual_MixA_TR1 1 A_manual A1X283 EGWAPATFIDK EGWAPATFIDK 6625.379
20230222_Exp…anual_MixA_TR1 1 A_manual A1X283 FEGRPVPDGDAK FEGRPVPDGDAK 3225.517
20230222_Exp…anual_MixA_TR1 1 A_manual A1X283 LGEAAALENNTGSEATGPSRPLPDAPHGVMDSGLPWSK LGEAAALENNTGSEATGPSRPLPDAPHGVMDSGLPWSK 5767.410
20230222_Exp…anual_MixA_TR1 1 A_manual A1X283 SLLDGEGPQAVGGQDVAFSR SLLDGEGPQAVGGQDVAFSR 2322.913
20230222_Exp…anual_MixA_TR1 1 A_manual A1X283 SVPVPLQEAPQQR SVPVPLQEAPQQR 6064.211
20230222_Exp…anual_MixA_TR1 1 A_manual A1X283 TDLPEEKPDATPQNPFLK TDLPEEKPDATPQNPFLK 9141.116
20230222_Exp…anual_MixA_TR1 1 A_manual A1X283 VTWSSGSTEAIYR VTWSSGSTEAIYR 7835.685
20230222_Exp…anual_MixA_TR1 1 A_manual A1X283 YTVIYPYTAR YTVIYPYTAR 11841.916
20230222_Exp…anual_MixA_TR1 1 A_manual A5Z2X5 LTGNPELSSLDEVLAK LTGNPELSSLDEVLAK 248208.404
20230222_Exp…anual_MixA_TR1 1 A_manual L0R6Q1 DYLQLLR DYLQLLR 55120.242
20230222_Exp…anual_MixA_TR1 1 A_manual L0R6Q1 GFLAGYVVAK GFLAGYVVAK 40748.910
20230222_Exp…anual_MixA_TR1 1 A_manual L0R6Q1 NQLESLQR NQLESLQR 37823.902
peptide_intensities_final.csv

The peptide_intensities_final.csv table contains the information about the calculated peptide intensities finalized by e.g. removing methionine oxidized peptides.

  • R.FileName is the capped raw file name
  • R.Replicate is the replicate number which was setup in your Spectronaut analysis
  • R.Condition is the condition naming which was setup in your Spectronaut analysis
  • PG.ProteinGroups protein group IDs
  • EG.ModifiedPeptide modified peptide sequences
  • PEP.StrippedSequence stripped peptide sequences
  • peptide_intensity peptide intensity
R.FileName R.Replicate R.Condition PG.ProteinGroups EG.ModifiedPeptide PEP.StrippedSequence peptide_intensity
20230222_Exp…anual_MixA_TR1 1 A_manual A0PJW6 GEVPAMLPLK GEVPAMLPLK 12263.129
20230222_Exp…anual_MixA_TR1 1 A_manual A0PJW6 LFDNTVGAYR LFDNTVGAYR 18185.355
20230222_Exp…anual_MixA_TR1 1 A_manual A1X283 AAAASVPNADGLK AAAASVPNADGLK 12529.687
20230222_Exp…anual_MixA_TR1 1 A_manual A1X283 EGWAPATFIDK EGWAPATFIDK 6625.379
20230222_Exp…anual_MixA_TR1 1 A_manual A1X283 FEGRPVPDGDAK FEGRPVPDGDAK 3225.517
20230222_Exp…anual_MixA_TR1 1 A_manual A1X283 LGEAAALENNTGSEATGPSRPLPDAPHGVMDSGLPWSK LGEAAALENNTGSEATGPSRPLPDAPHGVMDSGLPWSK 5767.410
20230222_Exp…anual_MixA_TR1 1 A_manual A1X283 SLLDGEGPQAVGGQDVAFSR SLLDGEGPQAVGGQDVAFSR 2322.913
20230222_Exp…anual_MixA_TR1 1 A_manual A1X283 SVPVPLQEAPQQR SVPVPLQEAPQQR 6064.211
20230222_Exp…anual_MixA_TR1 1 A_manual A1X283 TDLPEEKPDATPQNPFLK TDLPEEKPDATPQNPFLK 9141.116
20230222_Exp…anual_MixA_TR1 1 A_manual A1X283 VTWSSGSTEAIYR VTWSSGSTEAIYR 7835.685
20230222_Exp…anual_MixA_TR1 1 A_manual A1X283 YTVIYPYTAR YTVIYPYTAR 11841.916
20230222_Exp…anual_MixA_TR1 1 A_manual A5Z2X5 LTGNPELSSLDEVLAK LTGNPELSSLDEVLAK 248208.404
20230222_Exp…anual_MixA_TR1 1 A_manual L0R6Q1 DYLQLLR DYLQLLR 55120.242
20230222_Exp…anual_MixA_TR1 1 A_manual L0R6Q1 GFLAGYVVAK GFLAGYVVAK 40748.910
20230222_Exp…anual_MixA_TR1 1 A_manual L0R6Q1 NQLESLQR NQLESLQR 37823.902
iBAQ_protein_intensity_data_extracted_from_Spectronaut.csv

The iBAQ_protein_intensity_data_extracted_from_Spectronaut.csv table contains the information about the calculated peptide intensities finalized by e.g. removing methionine oxidized peptides.

  • R.FileName is the capped raw file name
  • R.Condition is the condition naming which was setup in your Spectronaut analysis
  • R.Replicate is the replicate number which was setup in your Spectronaut analysis
  • PG.ProteinGroups protein group IDs
  • iBAQ_intensities SpectroPipeR extracted iBAQ intensities
  • PG.IBAQ_raw Spectronaut iBAQ calculations

Since a protein group can contain more than one protein the number of theoretical peptides may differ. Therefore Spectronaut separates with a “;” e.g. “6179.5;6376.5” (iBAQ intensities from Spectronaut = PG.IBAQ_raw). SpectroPipeR uses the mean of the iBAQ values to give an iBAQ estimate for the protein group as well (iBAQ_intensities).

R.FileName R.Condition R.Replicate PG.ProteinGroups iBAQ_intensities PG.IBAQ_raw
20230222_Exp…anual_MixA_TR1 A_manual 1 A0PJW6 2537.4 2537.4
20230222_Exp…anual_MixA_TR1 A_manual 1 A1X283 1361.5 1361.5
20230222_Exp…anual_MixA_TR1 A_manual 1 A5Z2X5 82736.1 82736.1
20230222_Exp…anual_MixA_TR1 A_manual 1 L0R6Q1 33003.4 33003.4
20230222_Exp…anual_MixA_TR1 A_manual 1 L0R8F8 2669.7 2669.7
20230222_Exp…anual_MixA_TR1 A_manual 1 O00330 4721.1 4721.1
20230222_Exp…anual_MixA_TR1 A_manual 1 O00458 121.3 121.3
20230222_Exp…anual_MixA_TR1 A_manual 1 O00487 31489.5 31489.5
20230222_Exp…anual_MixA_TR1 A_manual 1 O00571 117313.4 117313.4
20230222_Exp…anual_MixA_TR1 A_manual 1 O00622 3771.2 3771.2
20230222_Exp…anual_MixA_TR1 A_manual 1 O13516 277582.3 277582.3
20230222_Exp…anual_MixA_TR1 A_manual 1 O13547 1905.0 1905
20230222_Exp…anual_MixA_TR1 A_manual 1 O14521 6462.5 6462.5
20230222_Exp…anual_MixA_TR1 A_manual 1 O14561 26804.5 26804.5
20230222_Exp…anual_MixA_TR1 A_manual 1 O14579 43005.4 43005.4
20230222_Exp…anual_MixA_TR1 A_manual 1 P21127;Q9UQ88 6179.5 6179.5;6179.5
iBAQ_protein_intensity_data_extracted_from_Spectronaut_summary.csv

The iBAQ_protein_intensity_data_extracted_from_Spectronaut_summary.csv table contains the information about the calculated peptide intensities finalized by e.g. removing methionine oxidized peptides.

  • R.Condition is the condition naming which was setup in your Spectronaut analysis
  • PG.ProteinGroups protein group IDs
  • mean_iBAQ_intensities mean iBAQ intensities over replicates
  • SD_iBAQ_intensities standard deviation of iBAQ intensities over replicates
  • CV_iBAQ_intensities coefficient of variation of iBAQ intensities over replicates
  • iBAQ_quantiles project specific iBAQ quantile calculated by using the analysis specific mean of iBAQ intensities over all runs
R.Condition PG.ProteinGroups mean_iBAQ_intensities SD_iBAQ_intensities CV_iBAQ_intensities iBAQ_quantiles
A_manual A0PJW6 2660.450 204.97937 0.0770469 Q5
A_manual A1X283 1324.475 59.81551 0.0451617 Q4
A_manual A5Z2X5 78088.275 3575.86724 0.0457926 Q9
A_manual L0R6Q1 31907.450 1404.82917 0.0440282 Q9
A_manual L0R8F8 2966.800 633.34122 0.2134762 Q5
A_manual O00330 4884.950 228.75335 0.0468282 Q6
A_manual O00458 150.875 19.88540 0.1318005 Q1
A_manual O00487 32368.550 741.58758 0.0229107 Q9
A_manual O00571 112171.575 6540.49731 0.0583080 Q10
A_manual O00622 3548.625 182.64097 0.0514681 Q5
A_manual O13516 251255.500 17827.74390 0.0709546 Q10
A_manual O13547 1873.825 187.98415 0.1003211 Q4
A_manual O14521 6567.325 183.61005 0.0279581 Q6
A_manual O14561 26587.425 707.79358 0.0266214 Q9
A_manual O14579 43786.775 1077.65641 0.0246115 Q9
maxLFQ_protein_intensity_data.csv

The maxLFQ_protein_intensity_data.csv table contains the information about the calculated MaxLFQ protein intensity data calculated by the iq package doi:10.1093/bioinformatics/btz961 algorithm.

  • PG.ProteinGroups protein group IDs
  • R.FileName is the capped raw file name
  • protein_intensity MaxLFQ intensity
  • R.Condition is the condition naming which was setup in your Spectronaut analysis
  • R.Replicate is the replicate number which was setup in your Spectronaut analysis
  • intensity_rank MaxLFQ protein intensity rank
PG.ProteinGroups R.FileName protein_intensity R.Condition R.Replicate intensity_rank raw_protein_intensity
A0PJW6 20230222_Exp…anual_MixA_TR1 16246.423 A_manual 1 497 14933.498
A0PJW6 20230222_Exp…anual_MixA_TR2 15784.906 A_manual 2 511 14526.089
A0PJW6 20230222_Exp…anual_MixA_TR3 16685.077 A_manual 3 480 15424.727
A0PJW6 20230222_Exp…anual_MixA_TR4 18735.705 A_manual 4 439 17465.382
A0PJW6 20230222_Exp…anual_MixB_TR1 14355.531 B_manual 1 571 15614.460
A0PJW6 20230222_Exp…anual_MixB_TR2 12414.754 B_manual 2 637 13508.147
A0PJW6 20230222_Exp…anual_MixB_TR3 15532.036 B_manual 3 528 17063.216
A0PJW6 20230222_Exp…anual_MixB_TR4 13183.154 B_manual 4 609 14239.709
A1X283 20230222_Exp…anual_MixA_TR1 6621.366 A_manual 1 954 6086.272
A1X283 20230222_Exp…anual_MixA_TR2 6175.261 A_manual 2 975 5682.795
A1X283 20230222_Exp…anual_MixA_TR3 6319.006 A_manual 3 977 5841.683
A1X283 20230222_Exp…anual_MixA_TR4 6628.684 A_manual 4 929 6179.244
A1X283 20230222_Exp…anual_MixB_TR1 5792.873 B_manual 1 1018 6300.887
A1X283 20230222_Exp…anual_MixB_TR2 5870.551 B_manual 2 1021 6387.583
A1X283 20230222_Exp…anual_MixB_TR3 6020.034 B_manual 3 1002 6613.501
maxLFQ_protein_intensity_data_wideFormat.csv

The maxLFQ_protein_intensity_data_wideFormat.csv wide-tablular table contains the information about the calculated MaxLFQ protein intensity data calculated by the iq package (doi:10.1093/bioinformatics/btz961) algorithm.

  • PG.ProteinGroups protein group IDs
  • other columns column names = capped R.FileName; values = MaxLFQ intensity
PG.ProteinGroups 20230222_Exp…anual_MixA_TR1 20230222_Exp…anual_MixA_TR2 20230222_Exp…anual_MixA_TR3 20230222_Exp…anual_MixA_TR4 20230222_Exp…anual_MixB_TR1 20230222_Exp…anual_MixB_TR2 20230222_Exp…anual_MixB_TR3 20230222_Exp…anual_MixB_TR4
A0PJW6 16246.423 15784.906 16685.077 18735.705 14355.531 12414.754 15532.036 13183.154
A1X283 6621.366 6175.261 6319.006 6628.684 5792.873 5870.551 6020.034 5664.491
A5Z2X5 270030.420 255377.914 250439.309 238487.251 107072.953 106952.527 107589.673 102970.133
L0R6Q1 31094.169 27795.500 29755.621 26191.666 23914.895 22749.815 22023.247 22871.072
L0R8F8 11617.795 12296.678 10715.977 16699.834 8618.927 11483.775 10355.943 10387.003
O00330 9823.646 10624.659 10481.575 10004.437 9040.597 8708.832 8357.038 8150.987
O00458 3035.682 4027.202 3914.859 4039.317 3032.950 2283.425 2717.885 2109.823
O00487 25136.634 26433.396 25734.191 26915.220 21718.440 21335.804 21920.659 21584.259
O00571 62322.848 60977.502 61372.144 61952.267 52451.533 54390.651 52178.827 53813.455
O00622 6960.431 6992.641 6753.587 6652.533 5285.016 6100.743 5370.444 6248.809
O13516 42004.038 42855.328 40434.184 43890.415 17571.980 17785.075 16900.070 18590.006
O13547 24870.131 23245.571 27541.161 21702.950 8801.724 8411.811 8651.519 9466.557
O14521 49214.326 49070.276 49341.867 51358.122 44134.583 33284.929 35259.856 32667.578
O14561 19756.871 20191.191 18788.607 19367.470 16934.600 16137.321 15052.328 14846.953
O14579 45989.129 46705.571 46212.956 45598.511 39090.096 38423.177 38617.010 38814.448
maxLFQ_protein_intensity_rank_data_wideFormat.csv

The maxLFQ_protein_intensity_data_wideFormat.csv wide-tablular table contains the information about the calculated MaxLFQ protein intensity ranks.

  • PG.ProteinGroups protein group IDs
  • other columns column names = capped R.FileName; values = MaxLFQ intensity ranks
PG.ProteinGroups 20230222_Exp…anual_MixA_TR1 20230222_Exp…anual_MixA_TR2 20230222_Exp…anual_MixA_TR3 20230222_Exp…anual_MixA_TR4 20230222_Exp…anual_MixB_TR1 20230222_Exp…anual_MixB_TR2 20230222_Exp…anual_MixB_TR3 20230222_Exp…anual_MixB_TR4
A0PJW6 497 511 480 439 571 637 528 609
A1X283 954 975 977 929 1018 1021 1002 1025
A5Z2X5 24 23 25 24 80 81 79 86
L0R6Q1 294 314 296 334 382 400 402 401
L0R8F8 661 628 703 479 818 668 717 716
O00330 751 705 714 735 790 815 835 840
O00458 1287 1177 1176 1140 1276 1355 1317 1354
O00487 339 332 338 321 412 417 406 418
O00571 143 151 146 140 185 178 183 181
O00622 925 917 940 926 1058 999 1051 979
O13516 222 217 226 201 488 486 503 475
O13547 341 369 320 389 807 834 814 768
O14521 181 183 180 174 216 285 263 292
O14561 417 412 444 423 499 520 542 553
O14579 193 194 192 193 244 250 246 245
maxLFQ_protein_intensity_data_normalization_factor.csv

The maxLFQ_protein_intensity_data_normalization_factor.csv table contains median-median normalization factors of MaxLFQ protein intensity data.

  • R.FileName protein group IDs
  • maxLFQ_post_calculation_normalization_factor MaxLFQ median-median normalization factor
R.FileName maxLFQ_post_calculation_normalization_factor
20230222_Exp…anual_MixA_TR1 1.0879181
20230222_Exp…anual_MixA_TR2 1.0866591
20230222_Exp…anual_MixA_TR3 1.0817097
20230222_Exp…anual_MixA_TR4 1.0727338
20230222_Exp…anual_MixB_TR1 0.9193742
20230222_Exp…anual_MixB_TR2 0.9190568
20230222_Exp…anual_MixB_TR3 0.9102643
20230222_Exp…anual_MixB_TR4 0.9258022
CV_20percent_cumulative_frequency.csv

The CV_20percent_cumulative_frequency.csv table contains the cumulative frequency of the CV≤0.2 fraction on peptide and protein intensity level.

  • R.Condition conditions as provided by Spectronaut report
  • cumulative frequency cumulative frequency
  • CV_cut CV threshold for which the cumulative frequency was calculated
  • level peptide or protein level
  • cumulative frequency proportion cumulative frequency proportion on overall peptide or protein numbers per condition
R.Condition cumulative frequency CV_cut level cumulative frequency proportion
HYE mix A 61892 0.2 peptide level 0.5397072
HYE mix B 64670 0.2 peptide level 0.5639317
HYE mix A 8192 0.2 protein level 0.8149622
HYE mix B 8301 0.2 protein level 0.8258058
CV_cumulative_frequency.csv

The comprehensive CV_cumulative_frequency.csv table contains the cumulative frequency on peptide and protein intensity level.

  • R.Condition conditions as provided by Spectronaut report
  • cumulative frequency cumulative frequency
  • CV_cut CV threshold for which the cumulative frequency was calculated
  • level peptide or protein level
  • cumulative frequency proportion cumulative frequency proportion on overall peptide or protein numbers per condition
R.Condition cumulative frequency CV_cut level cumulative frequency proportion
HYE mix A 231 0.01 peptide level 0.002014353
HYE mix B 355 0.01 peptide level 0.003095651
HYE mix A 59 0.01 protein level 0.005869479
HYE mix B 103 0.01 protein level 0.010246717071229606
HYE mix A 1315 0.02 peptide level 0.011466989893352634
HYE mix B 1881 0.02 peptide level 0.016402591626917342
HYE mix A 341 0.02 protein level 0.033923597
HYE mix B 527 0.02 protein level 0.052427378
HYE mix A 3188 0.03 peptide level 0.027799820365025246
HYE mix B 4429 0.03 peptide level 0.03862152
HYE mix A 862 0.03 protein level 0.085754079
HYE mix B 1175 0.03 protein level 0.11689216076402706
HYE mix A 5835 0.04 peptide level 0.050882042606625565
HYE mix B 7877 0.04 peptide level 0.068688577
HYE mix A 1464 0.04 protein level 0.14564265817747712
HYE mix B 1969 0.04 protein level 0.19588141663350578
HYE mix A 8950 0.05 peptide level 0.078045292
HYE mix B 11753 0.05 peptide level 0.10248785719891522
HYE mix A 2126 0.05 protein level 0.21150019896538003
HYE mix B 2681 0.05 protein level 0.2667130919220056
HYE mix A 114091 1 peptide level 0.9948899953783235
HYE mix B 114108 1 peptide level 0.9950382378332185
HYE mix A 10026 1 protein level 0.9974134500596896
HYE mix B 10026 1 protein level 0.9974134500596896
HYE mix A 114677 2 peptide level 1
HYE mix B 114677 2 peptide level 1
HYE mix A 10052 2 protein level 1
HYE mix B 10052 2 protein level 1