
SpectroPipeR: MVA module
MVA_module.Rd
Function for conducting multivariate analysis, which represents the third step in the pipeline and builds upon the normalization and quantification module from step 2.
Arguments
- SpectroPipeR_data_quant
it is the SpectroPipeR_data_quant list object from norm_quant_module() object e.g.
data_input_norm_quant
see example below- HCPC_analysis
boolean; should a HCPC be performed or not
- costum_colors
if you would like to use your own colors please provide a named color vector (e.g. c(condition1 = "black", condition2 = "grey")); names should have the same naming and length like the conditions set in Spectronaut
Value
saves MVA analysis results in output folder
SpectroPipeR_data_MVA list object with the MVA analysis data in addition to the automatically saved tables and plots For the description of the generated figures and tables please read the manual & vignettes
list element | description |
PCA_peptide_intensity | PCA list element: PCA list element of peptide int. |
PCA_protein_intensity | PCA list element: PCA list element of protein int. |
UMAP_protein_intensity | umap element: UMAP element of protein int. |
peptide_intensity_correlation | matrix: Spearman correlation scores of peptide int. |
protein_intensity_correlation | matrix: Spearman correlation scores of protein int. |
Examples
# \donttest{
#load library
library(SpectroPipeR)
# use default parameters list
params <- list(output_folder = "../SpectroPipeR_test_folder")
# example input file
example_file_path <- system.file("extdata",
"SN_test_HYE_mix_file.tsv",
package="SpectroPipeR")
# step 1: load Spectronaut data module
SpectroPipeR_data <- read_spectronaut_module(file = example_file_path,
parameter = params,
print.plot = FALSE)
# step 2: normalize & quantification module
SpectroPipeR_data_quant <- norm_quant_module(SpectroPipeR_data = SpectroPipeR_data)
# step 3: MVA module
SpectroPipeR_MVA <- MVA_module(SpectroPipeR_data_quant = SpectroPipeR_data_quant,
HCPC_analysis = FALSE)
# }