
SpectroPipeR: statistics module
statistics_module.Rd
Function for performing statistical analysis on Spectronaut output reports, representing the fourth step in the pipeline and is dependent on the normalization and quantification module output from step 2.
Usage
statistics_module(
SpectroPipeR_data_quant = NULL,
condition_comparisons = NULL,
number_of_cores = 2
)
Arguments
- SpectroPipeR_data_quant
it is the SpectroPipeR_data_quant list object from norm_quant_module() object e.g.
SpectroPipeR_data_quant
see example below- condition_comparisons
condition comparisons for pairwise- comparison; e.g. condition_comparisons <- cbind(c("condition1","control"),c("condition3","control") )
- number_of_cores
number of processor cores to be used for the calculations default = 2;
parallel::detectCores()-2
for faster processing (will detect the number of cores in the system and use nearly all cores)
Value
SpectroPipeR_statistics list element containing the statistics analysis results in addition to the automatically generated plots and tables in output folder For the description of the generated figures and tables please read the manual & vignettes
list element | description |
stat_results | tibble: statistical analysis results table |
stat_column_description | tibble: statistical analysis results table column description |
stats_results_iBAQ_quantiles | tibble: statistical analysis results table containing |
the iBAQ quantilies (Q1-Q10) of the protein per group for a better | |
ratio judgement | |
stat_results_filtered | tibble: filtered (user defined FC and adj. p-value) statistical |
analysis results table |
Examples
# \donttest{
#load library
library(SpectroPipeR)
# use default parameters list
params <- list(output_folder = "../SpectroPipeR_test_folder")
# example input file
example_file_path <- system.file("extdata",
"SN_test_HYE_mix_file.tsv",
package="SpectroPipeR")
# step 1: load Spectronaut data module
SpectroPipeR_data <- read_spectronaut_module(file = example_file_path,
parameter = params,
print.plot = FALSE)
# step 2: normalize & quantification module
SpectroPipeR_data_quant <- norm_quant_module(SpectroPipeR_data = SpectroPipeR_data)
# step 3: MVA module
SpectroPipeR_data_MVA <- MVA_module(SpectroPipeR_data_quant = SpectroPipeR_data_quant,
HCPC_analysis = FALSE)
# step 4: statistics module
SpectroPipeR_data_stats <- statistics_module(SpectroPipeR_data_quant = SpectroPipeR_data_quant,
condition_comparisons = cbind(c("HYE mix A",
"HYE mix B")
)
)
# }